MATH 121
THEORY OF POLYNOMIALS

II. A. Use synthetic division to find the quotient, Q(x) and the remainder R if P(x) is the dividend and D(x) is the divisor.

1. P(x) = 3x 4 - 5x3 - 3x2 + 11x - 10

2. P(x) = x 4 + 2x3 - 10x - 12

3. P(x) = 4x3 + 5x2 - 23x + 6

4. P(x) = x 4 + 5x3 + 7x ² - 8x + 9

5. P(x) = x + 3x3 - 7x 4 + 2

6. P(x) = x9 + 1

7. P(x) = 3x3 - ix2 + 2x - 3i

D(x) = x - 5

D(x) = x + 3

D(x) = x - 2

D(x) = x + 5

D(x) = x - 1

D(x) = x - 1

D(x) = x - i

B. Determine whether the linear expressions given are factors of the given polynomial P(x).

8. P(x) = x3 - 3x2 + 3x - 1

a) x - 1     b) x + 1     c) x - 2

9. P(x) = x5 + 11x3 - 12x

a) x - 1     b) x - 3     c) x + 5

 

ANSWERS

1. Q(x) = 3x3 + 10x2 + 47x + 246; R = 1220

2. Q(x) = x3 - x2 + 3x - 19; R = 45

3. Q(x) = 4x2 + 13x + 3; R = 12

4. Q(x) = x3 + 7x - 43; R = 224

5. Q(x) = -7x3 - 4x2 - 4x - 3; R = -1

6. Q(x) = x8 + x7 + x6 + x 5 + x 4 + x3 + x + x + 1; R = 2

7. Q(x) = 3x2 + 2ix; R = -3i

8. yes , no , no

9. yes, no, no