MATH 121
THEORY OF POLYNOMIALS
II. A. Use synthetic division to find the quotient, Q(x) and the remainder R if P(x) is the dividend and D(x) is the divisor.
1. P(x) = 3x 4 - 5x3 - 3x2 + 11x - 10 2. P(x) = x 4 + 2x3 - 10x - 12
3. P(x) = 4x3 + 5x2 - 23x + 6
4. P(x) = x 4 + 5x3 + 7x ² - 8x + 9
5. P(x) = x + 3x3 - 7x 4 + 2
6. P(x) = x9 + 1
7. P(x) = 3x3 - ix2 + 2x - 3i
D(x) = x - 5 D(x) = x + 3
D(x) = x - 2
D(x) = x + 5
D(x) = x - 1
D(x) = x - 1
D(x) = x - i
B. Determine whether the linear expressions given are factors of the given polynomial P(x).
8. P(x) = x3 - 3x2 + 3x - 1
a) x - 1 b) x + 1 c) x - 2
9. P(x) = x5 + 11x3 - 12x
a) x - 1 b) x - 3 c) x + 5
ANSWERS
1. Q(x) = 3x3 + 10x2 + 47x + 246; R = 1220
2. Q(x) = x3 - x2 + 3x - 19; R = 45
3. Q(x) = 4x2 + 13x + 3; R = 12
4. Q(x) = x3 + 7x - 43; R = 224
5. Q(x) = -7x3 - 4x2 - 4x - 3; R = -1
6. Q(x) = x8 + x7 + x6 + x 5 + x 4 + x3 + x + x + 1; R = 2
7. Q(x) = 3x2 + 2ix; R = -3i
8. yes , no , no
9. yes, no, no