MATH 121 Functions—Functional Notation

1. (Section 1.2) If g(x) = -2x+7, find and simplify completely: a) g(0) b) g(1) c) g(-2) d) g(4)e) g(a) f) $g(\bigcirc)$ g) g(x+h)2. (Section 1.2) If $f(x) = \frac{x^2-2}{x+2}$, find and simplify completely: a) f(1) b) f(-1) c) f(0) d) f(-3)

e) f(a) f) $f(\odot)$ g) f(x+h)3. (Section 1.2) Suppose f is the function given by $f(x) = -x^2 + 2x - 5$. Simplify each

of the following completely.

a)
$$\frac{f(x+h)-f(x)}{ax}$$
 b) $\frac{f(w)-f(1)}{1-w}$ c) $\frac{f(-2)}{3} + \frac{f(6)}{2}$
d) $\frac{f(x^2)-f(2x)}{xf(x)}$ e) $\frac{f(x+1)-f(x-1)}{2x}$

4. (Section 1.2, 2.2) Let g be the function given by $g(x) = \frac{2}{x}$. Find and simplify: g(2+h) - g(2)

$$\frac{g(2+h)-g(2)}{h}$$

5. (Section 1.3, 1.4) For a linear function f, f(2) = 4 and f(-1) = 3.

- a) Find the function.
- b) Find f(3).
- c) For what x is f(x) = -100?

6. (Section 1.3, 1.4) Suppose f is a <u>linear</u> function, and it is known that f(-1)=2 and f(2)=-5.

- (a) Find f(9).
- (b) For what input x is $f(x) = \frac{35}{4}$?

7. (Section 1.3, 1.4) For a linear function f, f(-1) = 3 and f(2) = 5.

- a) Find a formula for f(x).
- b) Write two other points for this function.
- c) Determine the intercepts of the graph of f.

- d) Determine the exact value of f(7.5).
- e) For what *x* is $f(x) = -10\frac{3}{5}$?

8. (Section 2.2) Consider the functions $p(x) = -x^2$ and $q(x) = \sqrt{19 - 3x}$

a) What is the domain of q?

b) Simplify completely:
$$-4 \cdot p(-4)$$

c) Simplify completely:
$$\sqrt{\frac{q(5)}{5-p(-2)}}$$

d) Simplify completely:
$$[q(-2)-q(-10)]^2$$

e) Simplify completely:
$$\frac{p(6)+6}{p(2)+2}$$

f) Simplify completely:
$$\frac{p(x+h) - p(x)}{2h}$$

9. (Section 2.3) Suppose p is the function $p(x) = 2x + \frac{20}{x} - 5$.

- (a) For what input(s) x is p(x) = 8?
- (b) For what input(s) x is p(x) = 36?
- (c) Solve the following equation: p(2x) = p(x)

10. (Section 2.3) Suppose *f* and *g* are the functions given by f(x) = x - 5 and $g(x) = \frac{x-8}{x}$. Solve each of the following equations.

a)
$$f(x) + g(x) = f(8)$$

b)
$$f(2x+1)-f(3-x)=g(-6)$$

c)
$$g(-4) \cdot g(x+8) = g(-8) \cdot g(-x+8)$$

11. (Section 3.5) Suppose f is the function $f(x)=3-\frac{1}{3}x$ and g is the function g(x)=-x+4. Solve for x in each of the following equations.

(a)
$$|f(x)+2| = \frac{g(-2)}{2}$$

(b)
$$5 - \frac{6|g(x)|}{5} = f(0)$$

(c) $|f(2x)| = |g(-x)|$

12. (Section 5.1) Let $f(x) = 3 + x + x^3$,

- a. Find $f^{-1}(5)$
- b. Graph f by plotting points.
- c. Graph f^{-1} ; comment on the relationship between the graph of f, f^{-1} , and y = x.

13. (Section 4.6) Let $f(x) = \frac{x-4}{2x^3 - x^2 - 8x + 4}$

- a. Find all x such that f(x) > 0.
- b. Find all x such that f(x) < -1.

14. (Section 4.5) Let $f(x) = \frac{x^2}{x-1} + 1$ and $g(x) = \frac{4x-2}{x-2} + \frac{x+4}{2}$

- a) Find the *x*-intercepts of the graph of *f*.
- b) Find the *x*-intercepts of the graph of *g*.
- c) Find the value(s) for x, if any exist, for which f(x) = g(x).

15. (Section 4.6) Suppose f and g are functions such that $f(x) = \frac{x-5}{2} - \frac{3x-1}{4}$ and $g(x) = \frac{1}{3} - \frac{3}{5}x$, solve each of the following:

a)
$$f(0) > g(x)$$

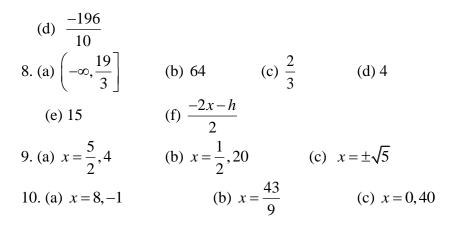
b)
$$f(x) \le g\left(\frac{-5}{3}\right)$$

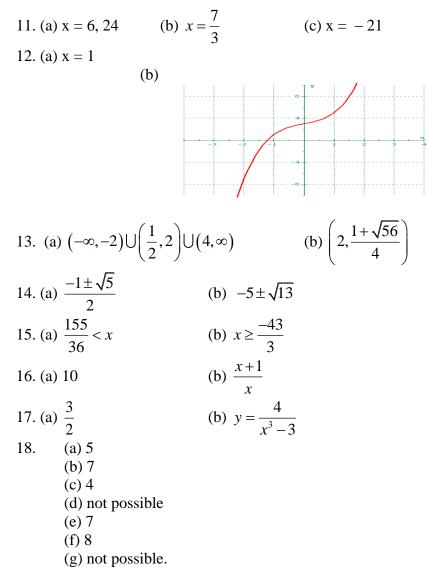
16. (Section 4.5) Let $f(x) = \frac{x}{x-2}$ and $g(x) = x^2 + 3$. Find and simplify completely: g(x+2) - g(x)

a)
$$\frac{1}{(f \circ g)(3)}$$
 b) $\frac{g(x)}{x \cdot g(1)}$

17. (Section 5.1)

a) Let f be a function such that f(2) = 4 and f(8) = 0. If g is the inverse function of f, find and simplify: $\frac{(f \circ g)(4)}{g(0)} + (g \circ f)(1)$


b) Find the inverse of the function: $f(x) = \sqrt[3]{\frac{4+3x}{x}}$


18. (Section 5.1) Suppose f and g are one – to – one functions such that f(2) = 7, f(4) = 2, and g(2) = 5. Find the value, if possible, of

a) $(g \circ f^{-1})(7)$ b) $(f \circ g^{-1})(5)$ c) $(f^{-1} \circ g^{-1})(5)$ d) $(g^{-1} \circ f^{-1})(2)$ e) $(f \circ f^{-1})(7)$ f) $(f^{-1} \circ f)(8)$ g) $(g \circ g)(2)$

Answer Keys:

1. (a) 7 (b) 5 (c) 11 (d) -1 (e) -2a + 7 (f) -2
$$\odot$$
 + 7 (g) -2(x + h) + 7
2. (a) $\frac{-1}{3}$ (b) -1 (c) -1 (d) -7 (e) $\frac{a^2 - 2}{a + 2}$ (f) ($\odot^2 - 2$)/(\odot + 2)
(g) $\frac{(x+h)^2 - 2}{(x+h) + 2}$
3. (a) $\frac{-2xh - h^2 + 2h}{ax}$ (b) w - 1 (c) -113/6 (d) $\frac{x^3 - 6x + 4}{x^2 - 2x + 5}$
(e) $\frac{-2x + 2}{x}$
4. $\frac{-1}{2+h}$
5. (a) $y = \frac{x}{3} + \frac{10}{3}$ (b) $\frac{13}{3}$ (c) -310
6. (a) $f(9) = \frac{-64}{3}$ (b) $x = \frac{-109}{28}$
7. (a) $f(x) = \frac{2}{3}x + \frac{11}{3}$ (b) $\left(0, \frac{11}{3}\right)$, $\left(1, \frac{13}{3}\right)$ (c) $\left(0, \frac{11}{3}\right)$, $\left(-\frac{11}{2}, 0\right)$

