MATH 121
THEORY OF POLYNOMIALS
I. A. Use the discriminant to determine whether the zeros are (A) real & equal, (B) real & unequal, or (C) complex.
1. P(x) = 3x2 + 2x - 3 2. P(x) = x2 - x + 1 3. P(x) = 2x2 + 4x - 1 4. P(x) = x2 - x - 3 5. P(x) = x2 + √3x + 3/4 6. P(x) = ix2 + x - 3 |
7. P(x) = x2 + 2x + 1 8. P(x) = 2x2 - 4x + 2 9. P(x) = x2 + (1 - i)x + 2 10. P(x) = x2 + 5x + 2 11. P(x) = 2 - x + 3x2 12. P(x) = 2x2 + x + 1 |
B. Find the value(s) of k such that the roots have the given properties.
13. x2 + 5x + k = 0; real and equal 14. 2x2 + 3x - k = 0; real and unequal |
15. x2 + 2kx + 4 = 0; complex 16. x2 + 3kx + 4 = 0 real and unequal |
ANSWERS
1) B 2) C 3) B 4) B 5) A 6) Can't tell; coefficients not real 7) A 8) A |
9) Can't tell; coefficients not real 10) B 11) C 12) C 13) 25/4 14) k > -9/8 15) -2 < k < 2 16) k < -4/3 or k > 4/3 |