MATH 121
THEORY OF POLYNOMIALS
1. {1 , 2 , -1 , i} ; 1
2. {2 + i , 2i} ; 2
3. {5 of multiplicity 2 , -3i} ; -3
4. {-i , 2 - i , i} ; 1
C. Find all zeros of the following polynomials. In problem 9, one zero is given.
9. P(x) = 2x ³ - 11x ² + 28x - 24 , r =
10. P(x) = x ² + 9
11. P(x) = 2x ² + 8
12. P(x) = x 4 - 1
13. P(x) = x ³ - 3x ² - 6x - 20
14. P(x) = x 4 2x 3 + 6x 2 + 22x + 13
D. (15 - 20) In (9 - 14) write each polynomial as the product of linear factors.
E. (21 - 26) In (9 - 14) write each polynomial as the product of linear or quadratic factors with real coefficients.
27. Find a polynomial function, f(x), of degree 3 with zeros: -2, 1, 5 and a y-intercept of 4.
ANSWERS
1) (x - 1)(x + 1)(x - 2)(x - i) 2) 2(x - 2 - i)(x - 2i) 3) -3(x - 5)2(x + 3i) 4) (x + i)(x - 2 + i)(x - i |
5) (x - 1)(x + 1)(x - 2)(x - i)(x + i) 6) 2(x - 2 - i) (x - 2 + i )(x - 2i) (x + 2i) 7) -3(x - 5)2(x - 3i) (x + 3i) 8) (x - i)(x + i)(x - 2 - i)(x - 2 + i)(x - i |
9) 10) ±3i 11) ±2i 12) ±1 , ±i 13) -1 ± i 14) -1, -1, 2 ± 3i |
15) P(x) = 2(x - 16) P(x) = (x - 3i) (x + 3i) 17) P(x) = 2(x - 2i) (x + 2i) 18) P(x) = (x - 1)(x + 1)(x - i)(x + i) 19) P(x) = (x - 5)(x + 1 - i 20) P(x)= (x + 1)2(x - 2 - 3i) (x - 2 + 3i) |
21) P(x) = 2(x - ![]() |
22) P(x) = x2 + 9 | 23) P(x) = 2(x ² + 4) |
24) P(x) = (x - 1)(x + 1)(x2 + 1) | 25) P(x) = (x - 5)(x2 + 2x + 4) | 26) P(x) = (x + 1)2(x2 - 4x + 13) |