MATH 122 MATHEMATICAL INDUCTION

Let P_n be a statement involving the positive integer n.

Examples:

a. $n^2 = n \times n$ b. 2n is an even number c. 2n + 1 is an odd number d. $\frac{n+1}{n} = 1$ e. n is divisible by 3 f. $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

Which of the above statements are true for ALL positive integral values of *n*?

Answer: a, b, c and f (f is not obviously true) Note that d is not true for any value of n, while e is only true for n = 3, 6, 9, ...

f is true for the following reason:

 $1+2+3+\cdots+(n-2)+(n-1)+n$ = sum of the first *n* terms of this arithmetic series (S_n).

Thus
$$S_n = rac{n}{2}(a_1 + a_n) = rac{n}{2}(1 + n) = rac{n(n+1)}{2}$$

Notation:

If P_n is a statement, Then P_1 is this statement where n = 1 P_2 is this statement where n = 2, etc.

Example:

Let P_n be: $n^2 + n$ is positive. Then P_1 says, " $1^2 + 1$ is positive", P_4 says, " $4^2 + 4$ is positive", etc.

AXIOM OF MATHEMATICAL INDUCTION

Let P_n be a statement (i.e. P_1 , P_2 , P_3 , ... etc. are defined).

Furthermore, let the following 2 conditions exist:

1. P_1 is true

2. P_{k+1} is true whenever P_k is true. (k is any positive integer.)

Conclusion: P_n is true for n = 1, 2, 3, ...

i.e. $P_1, P_2, P_3, P_4, \dots$ are <u>all</u> true.

EXAMPLE 1:

PROVE $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ by mathematical induction. (i.e. Prove that P_n is true for n = 1, 2, 3, ...) $P_n: 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ $\boxed{\text{IS P_1}}$ $P_1: 1 = \frac{1(1+1)}{2}$, i.e., 1 = 1 SO P_1 is true. ASSUME P_k is true: i.e., $1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$ PROVE P_{k+1} is true: i.e., Prove $1 + 2 + 3 + \dots + (k + 1) = \frac{(k+1)(k+2)}{2}$ USUALLY YOU START ALL WITH THE LEFT SIDE OF P_{k+1} : $1 + 2 + 3 + \dots + (k + 1) =$ $\underbrace{1 + 2 + 3 + \dots + k}_{\text{left side of } P_k} + (k + 1) =$ $\underbrace{k(k+1)+2(k+1)}_{2} + (k + 1) =$ $\frac{k((k+1)+2(k+1)}{2} = \text{right side of } P_{k+1}$ Therefore, P_n true for $n = 1, 2, 3, \dots$

EXAMPLE 2

SHOW THAT: P_n : $5^n - 1$ is divisible by 4.

IS P₁
TRUE?

$$P_{1}: \frac{5^{1}-1}{4} = \frac{5-1}{4} = \frac{4}{4} = 1$$
 Therefore: P_{1} is true.
ASSUME $P_{k}: 5^{k} - 1$ divisible by 4.
or $\frac{5^{k}-1}{4} = q$, is an integer
Then $5^{k} - 1 = 4q$ and $5^{k} = 4q + 1$
PROVE $P_{k+1}: 5^{k+1} - 1$ divisible by 4.
 $5^{k+1} - 1 =$
 $5^{k} \cdot 5 - 1 =$
replaces 5^{k}
 $(4q + 1) \cdot 5 - 1 = 4q \cdot 5 + 1 \cdot 5 - 1$
 $= 4q \cdot 5 + 5 - 1$
divisible by 4 divisible by 4
Therefore P_{n} TRUE for $n = 1, 2, 3$

MATH 122 MATHEMATICAL INDUCTION PROBLEMS

Use induction to prove that each of the following formulas is true for each positive integer n.

1.
$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

2. $1 \cdot 2 + 3 \cdot 4 + 5 \cdot 6 + \dots + (2n-1)(2n) = \frac{n(n+1)(4n-1)}{3}$
3. $\frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \dots + \frac{n}{2} = \frac{n(n+1)}{4}$
4. $2 + 6 + 10 + \dots + (4n-2) = 2n^{2}$
5. $2^{1} + 2^{2} + 2^{3} + \dots + 2^{n} = 2^{n+1} - 2$
6. $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$
7. $1 \cdot 2^{2} + 2 \cdot 3^{2} + 3 \cdot 4^{2} + \dots + n(n+1)^{2} = \frac{1}{12}n(n+1)(n+2)(3n+5)$

By induction show that:

- 8. $3^n 1$ is divisible by 2.
- 9. $5^n 1$ is divisible by 4.
- 10. $7^n 1$ is divisible by 6.
- 11. $8^{2n} 1$ is divisible by 63.
- 12. $6^{2n} 1$ is divisible by 35.
- 13. $9^{2n} 1$ is divisible by 80.
- 14. $n^2 3n + 4$ is even.
- 15. $2n^3 3n^2 + n$ is divisible by 6.
- 16.
- a. Show: If 2 + 4 + 6 + ... + 2n = n(n + 1) + 2 is true for n = j, then it is true for n = j + 1.
- b. Is the formula true for all *n*?