MATH 122
 MATHEMATICAL INDUCTION

Let P_{n} be a statement involving the positive integer n.

Examples:

a. $n^{2}=n \times n$
b. $2 n$ is an even number
c. $2 n+1$ is an odd number
d. $\frac{n+1}{n}=1$
e. n is divisible by 3
f. $1+2+3+\cdots+n=\frac{n(n+1)}{2}$

Which of the above statements are true for ALL positive integral values of n ?
Answer: $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{f}(\mathrm{f}$ is not obviously true)
Note that d is not true for any value of n, while e is only true for $n=3,6,9, \ldots$
f is true for the following reason:
$\underbrace{1+2+\underbrace{3+\cdots+(n-2)}_{=n+1}+(n-1)}_{=n+1}+n=$ sum of the first n terms of this arithmetic series $\left(S_{n}\right)$.
Thus $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}(1+n)=\frac{n(n+1)}{2}$
Notation:
If P_{n} is a statement,
Then P_{1} is this statement where $\mathrm{n}=1$
P_{2} is this statement where $\mathrm{n}=2$, etc.

Example:

Let P_{n} be: $n^{2}+n$ is positive.
Then P_{1} says, " $1^{2}+1$ is positive",
P_{4} says, " $4^{2}+4$ is positive", etc.

AXIOM OF MATHEMATICAL INDUCTION

Let P_{n} be a statement (i.e. $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots$ etc. are defined).
Furthermore, let the following 2 conditions exist:

1. P_{1} is true
2. P_{k+1} is true whenever P_{k} is true. (k is any positive integer.)

Conclusion: P_{n} is true for $n=1,2,3, \ldots$
i.e. $P_{1}, P_{2}, P_{3}, P_{4}, \ldots$ are all true.

EXAMPLE 1:

PROVE $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ by mathematical induction. (i.e. Prove that P_{n} is true for $n=1,2,3, \ldots$) $P_{n}: 1+2+3+\cdots+n=\frac{n(n+1)}{2}$

IS P_{1}
TRUE?

ASSUME P_{k} is true: i.e., $1+2+3+\cdots+k=\frac{k(k+1)}{2}$
PROVE P_{k+1} is true: i.e., Prove $1+2+3+\cdots+(k+1)=\frac{(k+1)(k+2)}{2}$
USUALLY YOU START ALL WITH THE LEFT SIDE OF P_{k+1} :
$1+2+3+\cdots+(k+1)=$
$\underbrace{1+2+3+\cdots+k}+(k+1)=$
left side of P_{k}
§
right side of P_{k}
$\frac{\overbrace{k(k+1)}}{2}$

$$
+(k+1)=
$$

$\frac{k(k+1)+2(k+1)}{2}=$ right side of P_{k+1}
Therefore, P_{n} true for $\mathrm{n}=1,2,3, \ldots$

EXAMPLE 2

SHOW THAT: $P_{n}: 5^{n}-1$ is divisible by 4 .
$\begin{gathered}\text { IS } \mathrm{P}_{1} \\ \text { TRUE? }\end{gathered} P_{1}: \quad \frac{5^{1}-1}{4}=\frac{5-1}{4}=\frac{4}{4}=1$ Therefore: P_{1} is true.
ASSUME $P_{k}: \quad 5^{k}-1$ divisible by 4.
or $\frac{5^{k}-1}{4}=q$, is an integer
Then $5^{k}-1=4 q$ and $5^{k}=4 q+1$
PROVE $P_{k+1}: 5^{k+1}-1$ divisible by 4 .

$$
\begin{aligned}
& 5^{k+1}-1= \\
& 5^{k} \cdot 5-1=
\end{aligned}
$$

replaces 5^{k}
$(4 q+1) \cdot 5-1=4 q \cdot 5+1 \cdot 5-1$

$$
=\underbrace{4 q \cdot 5}+\underbrace{5-1}
$$

divisible by 4 divisible by 4
Therefore P_{n} TRUE for $n=1,2,3, \ldots$

MATH 122 MATHEMATICAL INDUCTION PROBLEMS

Use induction to prove that each of the following formulas is true for each positive integer n.

1. $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
2. $1 \cdot 2+3 \cdot 4+5 \cdot 6+\cdots+(2 n-1)(2 n)=\frac{n(n+1)(4 n-1)}{3}$
3. $\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\cdots+\frac{n}{2}=\frac{n(n+1)}{4}$
4. $2+6+10+\cdots(4 n-2)=2 n^{2}$
5. $2^{1}+2^{2}+2^{3}+\cdots+2^{n}=2^{n+1}-2$
6. $1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$
7. $1 \cdot 2^{2}+2 \cdot 3^{2}+3 \cdot 4^{2}+\cdots+n(n+1)^{2}=\frac{1}{12} n(n+1)(n+2)(3 n+5)$

By induction show that:
8. $3^{n}-1$ is divisible by 2 .
9. $5^{n}-1$ is divisible by 4 .
10. $7^{n}-1$ is divisible by 6 .
11. $8^{2 n}-1$ is divisible by 63 .
12. $6^{2 n}-1$ is divisible by 35 .
13. $9^{2 n}-1$ is divisible by 80 .
14. $n^{2}-3 n+4$ is even.
15. $2 n^{3}-3 n^{2}+n$ is divisible by 6 .
16.
a. Show: If $2+4+6+\ldots+2 n=n(n+1)+2$ is true for $n=j$, then it is true for $n=j+1$.
b. Is the formula true for all n ?

